Chapter 4

Laser in steady-state regime

The preceding chapter was a general introduction to the principle of oper-
ation of lasers. It aimed at explaining the basic features of laser oscillation
with the minimum amount of mathematical formalism. In this chapter and
the following, we will develop in more details the theory of lasers. Indeed,
beyond their major interest in technology and scientific and industrial appli-
cations, lasers are fascinating objects for the physicist. The domain of lasers
physics is a research field by itself, which is linked with quite remote fields
of physics.

The reason behind such a variety of phenomena lies in the fact that
the laser equations, on spite of their simplicity, are nonlinear differential
equations. The study of laser dynamics is thus linked to the study of open
dynamical systems, with connections to nonlinear dynamics and determinis-
tic chaos. For example, we will in this chapter encounter stable and unstable
steady-state solutions, and so-called bifurcations when the stability of these
solutions changes when one tunes a control parameter. We will also see that
the laser threshold can, to some extent, be considered as a phase transi-
tion, thus linking laser physics to statistical physics and thermodynamics.
In the case of two modes, laser physics becomes even richer, since we will
have several types of possible steady-state solutions, in which only one mode
or two mode oscillate. Through the nonlinear behaviour of the laser ac-
tive medium, we will see how mode competition can lead to several types
of behaviors where either the two modes oscillate simultaneously or where
the two modes exhibit bistability. In this latter case, an intriguing situa-
tion occurs where two stable solutions exist, and the laser “chooses” between
these two solutions based on its preceding history. Thus, by tuning a control
parameter, the laser can exhibit hysteresis cycles.

The first aim of the present chapter is thus to derive these nonlinear laser
equations, based on results on light propagation in atomic media that we
obtained in Chapter 2. Section 4.1 details the derivation of these equations,
based on the simple Lamb’s model for the two-level atom that was presented
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290 CHAPTER 4. LASER IN STEADY-STATE REGIME

in Chapter 2. We then show how these equations can be generalized to more
realistic laser media. Section 4.2 is dedicated to the derivation of the single-
frequency laser steady-state solutions and their stability domains. Section
4.3 introduces the very important concept of adiabatic elimination and of
laser dynamical classes. Finally, Section 4.4 extends the discussion of the
laser steady-state regime to the case of two modes competing for the gain.

This chapter is accompanied by three complements. Complement 4A
presents a more general derivation of the laser equations based on the density
matrix formalism, which was introduced in Complement 2C. It allows one to
understand how laser theory can be built on somewhat more solid grounds
than the simple derivation given in the chapter itself. Moreover, the so-called
Maxwell-Bloch equations that are obtained in this context illustrate the role
of atomic coherences in laser operation.

Complement 4B illustrates the fact that lasers are nonlinear dynamical
systems by studying an interesting phenomenon: injection locking. Indeed,
similarly to Huygens’ clocks or to any oscillators, two lasers can synchronize
their oscillation frequencies when they are coupled. Beyond its fundamen-
tal interest, this phenomenon has important applications when it comes to
transferring the spectral purity of a small power laser, with a well controlled
frequency, to a more powerful one, or in some rotation sensors like the ring
laser gyroscope. Moreover, it paves the way to laser mode-locking that will
be studied in Chapter 5.

Finally, Complement 4C is devoted to descriptions of some important
applications of laser energy in various domains, showing how the ability to
be concentrated is the key to many applications of laser light.

4.1 Derivation of the single-frequency laser equa-
tions

In this section, we establish the equations of evolution of a single-frequency
laser. We start by deriving the equation of evolution of the field. We then
write the equation of evolution of the population inversion in three different
cases: 1) the two-level atom model of Chapter 2; ii) the three-level model;
iii) the four-level model. A more general derivation, based on the formalism
of the density operator for the atoms and on Maxwell-Bloch equations, is
presented in Complement 4A.

4.1.1 Equation of evolution of the field

We consider a ring cavity as sketched in Figure 4.1. We assume that the
active medium is spatially homogeneous and has a length L,. We suppose
that the laser field propagates in one direction only (the clockwise direction
in Figure 4.1) and is monochromatic of frequency w. We call z the abscissa
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4.1. DERIVATION OF THE SINGLE-FREQUENCY LASER EQUATIONS291

along the light propagation axis inside the cavity, with origin O, and we
suppose that the intra-cavity field can be treated as a truncated plane wave
(“top-hat beam”) of transverse section area S, namely:

E(z,t) = A(z,t) e {@F2) e = 2Re | A(2, 1) e*i(“’t*k‘z)] , (4.1)

where we have supposed that the polarization of the intra-cavity field is fixed,
allowing us to treat light as a scalar quantity. For example, in a cavity such
as the one of Figure 4.1, the light polarization can be linear and orthogonal
to the plane of the cavity. Moreover, in this section, we neglect the dispersion
of the active medium and take the real part of k to be k' = w/c. A is called
the slowly varying field complex amplitude, meaning that it depends on ¢t

and z in a much slower way than the phase term e {“t=52) je.
0
aA(t, z)| < w|A(t, 2)| , (4.2)
0
‘&A(t’ 2)| < |k| |A(t, 2)] . (4.3)

The slowly varying amplitude approzimation of Equations (4.2) and (4.3)
means that the temporal variation of the amplitude over one time period
27 /w and the spatial variation of the amplitude over one wavelength are
small. This approximation is usually fulfilled, except for lasers emitting
pulses with a duration of a few femtoseconds. In the following, we make a
stronger hypothesis. We indeed suppose that the laser operates in continuous
regime or emits pulses which are much longer than the cavity round-trip time
Lcay/c, where L,y is the optical length of one round-trip inside the cavity.
We moreover assume that the losses and gain per round-trip are small. This
ensures that the mode intensity is almost the same everywhere inside the
cavity.

At time ¢, let us consider the intra-cavity field A(z = 0,¢) at origin point
O (see Figure 4.1). After one round-trip inside the cavity, i.e. after a delay
Lecay/c, the field at point A is

Lcav i1
A <z =0,t+ T) = VRiRyR3(1 — ) A(z = 0,t) el Feav o9La/2 (4 4)

where the coefficients R; are the intensity reflection coefficients of the mirrors
and where a holds for the other cavity losses (scattering, residual absorption,
diffraction losses,...). g is the intensity gain coefficient of the active medium.

Since k' = w/c, the factor exp(ik/Leay) is equal to 1 as soon as the laser
frequency is equal to one of the cavity eigenfrequencies wy:

wg =gq2m

= ¢ Qear » 45
Lcav q «“ ( )
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Figure 4.1: Unidirectional ring laser. O is the origin point for the abscissa
z.

where ¢ is an integer. We thus retrieve the longitudinal modes and the free
spectral range ¢,y defined in Section 3.3.1.

Since we suppose that the laser operates in continuous regime, or emits
pulses whose duration is much longer than L,y /c, we can focus on the value
of the field amplitude at the origin z = 0. We thus skip the space dependence
of A(z,t) and write:

A(t) = A(z=0,t) . (4.6)
Moreover, since we suppose that the losses and gain per round-trip are small,

we can perform a first-order Taylor expansion of the left-hand side of equation
(4.4):

Lcav Lcav dA
A<t+7) ~ Af) + = (4.7)

Then, using the expansion

exp (gLa> ~1+ 9La (4.8)

2 2 7

we obtain the following first-order differential equation for the field ampli-
tude:
d;‘l — _ 1 + <9 La
dt B 2Tcay 2 Leay

A, (4.9)

with
L av -1
Toay = 2 [1 — VRiR:Rs(1—a)| . (4.10)
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Let us now use the definition of the laser cross section oy, that relates the
gain to the population inversion density An = n, — n, in the active medium
(see Equation 2.123):

g=opAn. (4.11)

Equation (4.9) then becomes:

dA A o, Ly
dt 2Teay 2 Leay

AnA. (4.12)

The quantity 7.,y defined by Equation 4.10 is called the lifetime of the pho-
tons inside the cavity. Indeed, in the absence of gain (the so-called “cold
cavity”), Equation (4.12) shows that the intracavity field amplitude decays
exponentially, i. e., A(t) = A(0)e */?7av_ The intensity, proportional to
|./4|2, thus decays with a lifetime 7.,,. Its inverse is the decay rate 7cay of

the intracavity intensity:
1
VYeav = —— - (4.13)
Teav

Since the losses are supposed to be small [1 — Rj RoR3(1 — a) < 1], we ob-

tain

L
Tcav — C?I\:/c > (414)

where we have introduced the total losses per cavity round-trip:
T:(1—R1)+(1—R2)+(1—R3)+0¢. (4.15)

The physical meaning of 7.,y appears clearly in Equation (4.14): 7¢ay is the
duration of one round-trip divided by the losses per round-trip inside the
cavity. It is also sometimes useful to define the quality factor Qcay of the
cavity (see Complement 3A):

Qcav = W Tcav - (4.16)

To gain some physical insight in the laser physics, it is worth transform-
ing Equation (4.12), which governs the evolution of the complex amplitude
A, into an equation governing the number of photons N stored inside the
cavity!.

Since we have supposed that the intra-cavity beam is a truncated plane
wave of cross section are S, its Poynting vector, i. e., its directional energy
flux density, is oriented along z with a modulus given by Equation (2.54):

IT = 2¢0 c|A]? . (4.17)

Tt should be noted that the word “photon” is used here only as a natural unit of
energyy. A rigorous definition of the photon requires the field quantization, as shown in
PHY562.
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The photon flux inside the cavity is thus I1S/hw. Since the round-trip time
is given by Lcay/c, we can define the number of photons inside the cavity:
HS LCaV _ H‘/’CaV

N:Ec_hwc’

(4.18)

where we have introduced the volume occupied by the top-hat mode inside
the cavity:
chav = SLcaV . (419)

Using Equations (4.17) and (4.19), we obtain:

260 Lcav 2
= — . 4.2
N e S|A| (4.20)
Equation (4.12) then rewrites
dN N
—_ = - AN 4.21
7 — +KANN (4.21)

where we have introduced the population inversion AN:
AN = Ny, — N, = Vo An = Vy(np — ng) - (4.22)

V. is the volume occupied by the laser mode in the active medium of length
L,:
Vo=SL,. (4.23)

Finally, the atom-photon coupling coefficient x in Equation (4.21) is given
by:

COoTq,

chav

(4.24)

4.1.2 Equation of evolution of the population inversion

Equation (4.21) has two terms: the loss term and the gain term. This latter
term contains the population inversion AN. A full description of the laser
behaviour thus requires the derivation of an evolution equation for AN,
which we obtain below following three different models. A more general
derivation based on so-called Bloch equations will be given in Complement
4A.

a. Rate equation for Lamb’s model

Let us recall that the Lamb’s model consists in assuming that the two levels

a and b of the laser transition have the same lifetimes 1/T'p (see Figure 4.2).

Taking then the difference between Equations (2.38) and (2.39), we obtain:
d

TAN =7, — A, ~TpAN ~TpsAN. (4.25)
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Figure 4.2: Transition rates in Lamb’s model.

If |w — wo| < I'p, the saturation parameter s is related to the number of
photons A by (see Equations 2.23, 2.54, 2.59, 2.114, and 4.18):

S~

1 K
=2—N . 4.26
Isat FD ( )
The pumping term Ay — A, in Equation (4.25) can be cast in the following
form:

Ay — Ay =Tp ANy, (4.27)

by introducing the dimensionless pumping parameter ANy. Equation (4.25)
then becomes:

AN
% — Th(ANy — AN) — 2kANN . (4.28)

The meanings of the three terms on the right-hand side of Equation (4.28)
are clear. The first one, 'pA Ny, corresponds to pumping. 'pAN describes
the relaxation of the population inversion, and 7p = 1/T'p will from now
on be called the lifetime of the population inversion. The term —2kANN
corresponds to stimulated emission and absorption. It is the symmetric of
the term +xkANN in Equation (4.21). The coefficient —2 is related to the
fact that, in Lamb’s model, each time one photon is emitted (V" — N + 1),
the population inversion decreases by two units (AN — AN — 2) because
level |b) loses one atom while level |a) gains it.

b. Rate equations for the three-level system

Let us next consider the three-level system, which we have already described
in Section 3.5. The peculiarity of such a system is that the laser transition
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Figure 4.3: Three-level system.

ends on the ground state, as shown in Figure 4.3. The rate equations for
such atoms are obtained by adding the stimulated emission and absorption
terms to Equations (3.31, 3.32), leading to

dN, N,
— w(N, — N,) — ¢ 4.29
5 = i (4.29)
AN, N, N
ANy Ne No oo (4.30)
dt Te T
dn, N
o = 0Ny = Ne) + T—b + K(Ny — N (4.31)
b

Suppose that the system satisfies the same conditions as in Section 3.5, i.
e., Te < 7, and wr, < 1. Then, level |e) decays quasi instantaneously to
level |b), and we can consider that N, ~ 0. Then, by taking the difference
between Equations (4.30) and (4.31), and remembering that the total number
of atoms N = N, + N}, remains constant, we are left with:

%AN =T(ANy — AN) — 26kANN , (4.32)
where

1
F'=w+—, (4.33)

Tp

WTp — 1

ANg =N . 4.34
0 wTp + 1 ( )

We notice that the factor of 2 in front of the stimulated emission term is
also present here, due to the infinite lifetime of the lower level of the laser
transition.

c. Rate equations for the four-level system

We have already written the rate equations of the four-level system of Figure
4.4 in the absence of laser light (see Section 3.6). Guided by the results
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derived in the framework of Lamb’s model, we add the terms corresponding
to absorption and stimulated emission inside the laser to Equations (3.38-
3.41). We obtain:

= w - Ny - 3E (1.35)
% _ ]TV_ - ]TV_bb — k(N = N (4.36)
dé\;“ = Jj—b” —~ Jj—: + K(Np — NV, (4.37)
T N - N (4.38)

o) D k050000 \Fait relaxation
Ne/Tex

|b)

(N. — N,) Pumping Slow

w(Ng e relaxation ENy M | KN N

Ny/ 7

|a)
N,/
Fast relaxation

g)

Fundamental level

Figure 4.4: Four-level system.

If this four-level system is ideal, as we have seen in Section 3.6, the
lifetimes of levels |e) and |a) are so short (7e,7, < 7, and w7, < 1) that we
can neglect their populations: N, ~ 0 and N, ~ 0. Then AN = N, and
Equations (4.35-4.38) simply become:

dAN AN

—— =wN, - — — KANN . 4.
% w Ng - KANN (4.39)

Using the fact that Ny + N, = N, Equation (4.39) can be re-written:

dﬁ—tN _ (AN, — AN) — KANN | (4.40)
where
1
T=w+—, (4.41)
)
ANy = N—"0 (4.42)
1+wmn

Excerpt from lecture notes of Phy551A, Ecole Polytechnique, 2018



298 CHAPTER 4. LASER IN STEADY-STATE REGIME

Comparing Equation (4.40) with Equations (4.28) and (4.32), we notice that
there is no longer a factor of 2 in front of the term KANN responsible for
stimulated emission. This is due to the fact that thanks to the fast decay of
level |a), each photon emission leads to a decrease of AN by one unit only.

d. Generalization

By comparing Equations (4.28), (4.32), and (4.40), we see that the rate
equation for the population inversion keeps the same form, except for a
numerical factor in front of the term describing light-atom interaction (the
saturation term). Following Siegman?, we thus write the general laser rate
equations in the following manner:

w N
E = _Tcav + KANN, (443)
dﬁ—tN _ T(ANy — AN) — 2 kANN (4.44)

where the coefficient 2* is equal to 1 for a four-level system, 2 for a three-
level system, and can take other values for more complicated level structures.
Moreover, one should notice that the term ANy depends on the details of the
considered laser. In particular, it is not always proportional to the power in-
jected in the pumping process. For example, by simply comparing Equations
(4.42) and (4.34), one can see that ANy is always positive for a four-level
system while it can vary between —N and + N for a three-level system, as
already shown in Figure 3.18. Finally, in the following, we will alternatively
use I or its inverse 7, the lifetime of the population inversion:

(4.45)

1
T=r-
We also notice from (4.43) that dN /d¢t = 0 if N' = 0: the laser cannot start
by itself from 0. In order to start, a laser needs spontaneous emission, which
will be introduced in a phenomenological way in Sections 4.2.4b and 5.4 and
in a more rigorous manner in PHY562.

4.2 Single-frequency laser in steady-state regime

In this section we derive the steady-state solutions for the single-frequency
laser Equations (4.43) and (4.44), and we discuss their stability and the
associated laser frequency and phase. The use of Equations (4.43) and (4.44)
will allow us to be more rigorous than in Section 3.1 and to go far beyond.

2A.E. Siegman, Lasers, University Science Books, (1986).
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4.2.1 Steady-state solutions
a. Determination of the steady-state solutions for N' and AN
Let us look for the steady-state solutions of Equations (4.43) and (4.44) by

dAN
taking ﬂ =0 and —— = 0. This leads to:
dt dt

1
N <I<LAN — > =0, (4.46)
Tcav
ANy = TAN + 2* kANN . (4.47)

In order to find the solutions, Equations (4.46) and (4.47) must be solved
simultaneously. We first notice that Equation (4.46) has two possible solu-
tions:

HAN =0, (4.48)

or

. 1

ii) KAN — =0. (4.49)
Tcav

In the following, we successively study these two solutions.
i) “OFF” solution:

The first solution, obtained from Equation (4.48) corresponds to the ab-
sence of photons inside the cavity. We will thus label it as the “OFF” solu-
tion. By inserting N' = 0 into Equation (4.47), we obtain the value of AN
corresponding to this solution. This finally leads to:

ANopr = ANy , (4.50)
Norr = 0. (4.51)

It corresponds to the laser turned off. There is no light inside the cavity and
the population inversion is not saturated.
ii) “ON” solution:
The second solution corresponds to Equation (4.49), that leads to the
following value for AN:
1 ST
ANoN = =— =ANy, (4.52)

RTcav g

where, as defined in Equation (4.15), T are the total losses per round-trip.
By injecting this value of AN into Equation (4.47), one obtains the following
value for \:

1 /AN, 1
Now = 5 (ANth - 1) = 5 =1 =Nu(r=1),  (453)
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with .
-N’sat — 9 (454)

2¥KT

and where the relative excitation r has been defined according to

AN,
r= ANy

(4.55)

Since the number of photons can only be positive, we consider this solution
when r > 1 only. We labeled it “ON” because, as seen from Equation (4.53),
it corresponds to a number of photons larger than 0 when r» > 1. Using
Equation (4.26), Equation (4.53) becomes:

Ion = Iga(r — 1) . (4.56)

This solution corresponds to the laser turned on. It is worth noticing from
Equation (4.52) that the value of the population inversion remains clamped
to its value at threshold ANy, for any value of the pumping, i.e. of the
unsaturated population inversion ANy, as already noticed in Figure 3.3.
This is easily understood by rewriting Equations (4.55) and (4.56) in the
following manner:

AN
141/ Isat

One can thus see that once the laser is on, the population inversion gets
saturated by the intra-cavity intensity and remains blocked to the value
ANy,. If there were no such saturation, the round-trip gain would remain
larger than the losses, leading to an unlimited exponential increase of the
intensity. It is thus the nonlinear saturation which is responsible for the
stabilisation of the laser intensity.

ANy, = (4.57)

b. Stability of the steady-state solutions

We can see that there exists two steady-state solutions, the so-called “ON”
and “OFF” solutions, which coexist for ANy > ANy,. In the following, we
analyze their stability to know which solution will be chosen by the laser.

e Stability of the “OFF” solution
Let us suppose that we move the laser slightly away from the “OFF”
solution:

AN(t) = ANorr + x(t) = ANy + (1) , (4.58)
N(t) = Norr +y(t) = y(t) , (4.59)

where z(t) et y(t) are small quantities. By injecting (4.58) and (4.59) into the
Equations (4.43) and (4.44) for the evolution of the laser, and keeping only
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first-order terms in x and y one gets the linearized equations of evolution:

i) = 0 o e ANG () | (4.60)

T

30 = (5AN = ) (0. (4.61)

Tcav

which can be rewritten:

T T
=M . (4.62)
Y Y
The matrix M is given by
—1/T —2* HANQ
. (4.63)
0 HANQ — 1/Tcav

The eigenvalues of M are A\; = —1/7 and Ay = KANy—1/7cav. Consequently,
the general solution of Equation (4.63) takes the form:

z(t) = z1eMt 4 z9e*?t | (4.64)

y(t) = y1eM* 4 yoe?' (4.65)

where x1, x3, y1, y2 depend on the initial conditions. The solution “OFF”
will consequently be stable if x(¢) and y(t) come back to zero. This requires
that the real parts of these two eigenvalues A\; and Ao, called Lyapunov
exponents, are both negative, i.e. that ANy < 1/k7cay = ANy,. The laser is
then said to be below threshold. The gain term «FAN is smaller than the
losses —F'/Tcay in the equation of evolution (4.43) of the intensity. Above
threshold, the solution “OFF” is no longer stable.
In summary (see Table 4.1), the laser threshold is characterized by an
unsaturated population inversion ANy = ANy, given by
1
ANy, = ) (4.66)

RTcav

and by the fact that the unsaturated gain is exactly equal to the losses, as
can be seen using (4.52) to calculate the gain at threshold:
AN,
ginLa = o1.Angn Ly = ULL—;La =T. (4.67)
a
It is worth noticing also that, at threshold, the Lyapunov exponent As is
equal to zero. Thus, the system takes an infinite time to reach its steady-
state. This critical slowing-down is characteristic of a system at a phase
transition, an analogy that will be developed in Section 4.2.3.

e Stability of the “ON” solution
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Unsaturated Saturated
ANy gain AN gain
Below threshold| ANy < ANy, < Losses AN = AN
At threshold | ANy = ANy, = Losses AN = ANy = ANy,
Above threshold ANy > ANy, > Losses AN = ANy, = Losses

Table 4.1: Characteristics of a laser below, at, and above threshold

Once the laser oscillates, Equation (4.57) becomes valid. It shows, as
summarized in Table 4.1, that when the laser is on, the saturated population

inversion is 1
AN = ANy, = , (4.68)

RTcav

showing that the saturated gain is equal to the losses. This condition ensures
the equality of the gain and losses terms in Equation (4.43): the laser is in
steady-state regime because the saturated gain exactly compensates for the
losses at every round-trip inside the cavity.

To make sure that this solution is stable above threshold, let us move the
laser slightly away from the “ON” solution:

AN(t) = ANon + z(t) = ANy, + z(1) , (4.69)
N(t) = Nox +y(t) , (4.70)

where z(t) and y(t) are supposed to be small. By injecting (4.69) and (4.70)
in Equations (4.43) and (4.44) and keeping only first-order terms, one gets
an equation similar to (4.62) where the matrix M is given by

( —r/T —2*/Tcav>
M= . (4.71)
(r—1)/2*r 0

The eigenvalues of this matrix are:

O 47

2r 2 T T Teav

One can see that for » > 1, the real parts of the two eigenvalues are always
negative, confirming the stability of the “ON” solution.

c. Comparison between three- and four-level systems

Figure 4.5 summarizes the preceding discussion about the steady-state solu-
tions of the laser and permits to confirm the behavior that we had anticipated
in Figure 3.3. In particular, it shows that the threshold actually corresponds
to the transition from one steady-state solution to the other occurring when
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Figure 4.5: Steady-state solutions of the laser versus unsaturated population
inversion. Full line: stable solution; dotted line: unstable solution.

the unsaturated gain exceeds the losses. This sudden change in stability of a
give solution is named a bifurcation in the context of dynamical systems. It
is plotted versus the unsaturated population inversion ANy. As seen earlier,
ANy does not evolve versus the pumping rate w in the same manner in a
three-level and in a four-level system (see Sections 3.5 and 3.6). If we imag-
ine that we can find a three-level system and a four-level system exhibiting
identical parameters, Figure 4.6 compares their behaviours as functions of
w. One can see that the three-level system presents two disadvantages®: i)
an important amount of pumping is used to bleach the medium before gain
can be obtained and ii) since gy is twice smaller for a three-level system
than for a four-level system, the slope of the evolution of the power versus
pumping is also twice smaller.

d. Output power: optimal output coupling

The steady-state solutions of the laser Equations (4.43) and (4.44) allow us
to determine the number of photons and consequently the intensity inside

30ne should not forget, however, that the first laser, namely the ruby laser [T.H.
Maiman, Stimulated Optical Radiation in Ruby, Nature 187, 493 (1960)|, was based on a
three-level system. In the same vein, the Erbium doped amplifying fiber, a major com-
ponent of optical fibers telecommunication system, uses a three-level system (cf. section
3.5.2).
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Figure 4.6: Compared evolutions versus pumping rate w of (a) the unsatu-
rated population inversion ANy, (b) the population inversion AN and (c)
the number of photons N for a three-level and a four-level system.

the laser cavity. For example, for the laser of Figure 4.7 that has one output
coupling mirror of transmission 7' and where we call all the other losses
(imperfect reflection from other mirrors, scattering, absorption,...) «, the
total losses per round-trip are T = T' 4 « and, according to Equation (4.56),
the intra-cavity intensity is

L
I = I(r — 1) = Lig (ﬁ:z _ 1) : (4.73)

where L, is the length of the active medium. As expected, for a given value
of the gain gg, the smaller the mirror transmission 7' (and thus the losses),
the larger the intracavity intensity.
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Figure 4.7: Laser with an output coupling mirror with transmission 7.

One should not deduce from this argument that the laser output intensity
is optimized by minimizing T'. Indeed, the laser output intensity is given by:

L
Iout - TIsat <,1€0—+2; - 1> 5 (474)

which exhibits two contradictory dependences on T'. The evolution of Iyt
versus 1 for fixed values of ggL, and « is plotted in Figure 4.8. The laser
oscillates for 0 < T < Thpax = goLcay — Y. The maximum output power I5i*
is obtained for the optimal transmission Ti;. They are given by:

Topt =V gOLaa -, (475)
2
é?l%x — Igat ( V goLa — \/a) . (476)

In the limit where the pumping is very strong and the laser is far above
threshold (gL, > T), the maximum laser output power is given by:

hwAN,

T

PR ~ SIsatgoLa =

out (477)
We can thus see that the maximum power that one can extract from the
laser medium is equal to the energy that can be stored in the active medium
(hwANp) divided by the gain recovery time 7.

The non monotonic evolution of I, versus 17" shown in Figure 4.8 is yet
another consequence of the intrinsic nonlinearity of the laser due to gain
saturation.
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Figure 4.8: Output laser intensity versus output coupler transmission 7.

4.2.2 Laser oscillation frequency
a. Cavity modes. Frequency pulling

In Section 4.1.1, we supposed that we could neglect the refractive index of
the active medium filling the laser cavity, and we assumed that e#'Leav = 1
in the self-consistency Equation (4.4) by taking

w=wg = qQay , (4.78)

where ¢ is an integer and the cavity free spectral range is defined in Equation
(3.20). The laser frequency is then just simply equal to one of the resonance
frequencies of the “cold” cavity studied in Complement 3A. Let us now
examine the frequency shift introduced by the real part of the susceptibility
of the active medium (see Section 2.3.4). The self-consistency of the phase
of the field after one round-trip inside the cavity imposes

k' Leay = 2q 7, (4.79)

where we have supposed that the active medium fills the cavity. Using Equa-
tion (2.95), we get:

/
d (1 4 &) Leay = 297 . (4.80)
c 2
The frequency w of the laser is thus given by:
/
w X' (w) ¢ _
= (1 = =1 4.81
2w<+ 2> MTew 21 (481)

Let us suppose that the active medium of the laser can be well described by
Lamb’s model. Then, using Equations (2.88) and (2.102):

X) = =5 W) = D o). (152
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where Aw is the power broadened full width at half maximum of the gain

curve (see Section 2.1.2):
Aw =2,/T% + Q2. (4.83)

If we suppose that w is close to wy, the frequency shift created by the am-
plifying atoms reads

Wy — Wy €
Ao w (wg) -
We can thus see that the frequency shift is respectively positive or negative
depending whether w, is smaller or larger than the center frequency wq of
the transition. The active medium thus “pulls” the frequency w towards the
gain maximum: this is the so-called “frequency pulling” effect.
In the case where the active medium has a length L, and does not com-
pletely fill the cavity, Equation (4.84) becomes:

(4.84)

w—wq:

w—wy | Wo— quLag(wq) (4.85)

Wy Aw w  Leay

Let us introduce the quality factors Qcay and @, for the cavity and the active
medium, respectively:

Qene = 0 Teny = 2720 (1.56)
Qa = % : (4.87)

Equation (4.85) then reads:
w = Qevy  Qato (4.88)

Qcav + Qa

The laser frequency is thus the average of the eigenfrequencies of the atoms
and the cavity, weighted by their respective quality factors. In many lasers,
one has Qcay > @, and the laser frequency is very close to the cavity
resonance frequency: w ~ wy.

b. Phase of the field

Equation (4.79) has allowed us to determine the frequency of the intra-cavity
field. However, it does not impose the phase of the field, i.e., the argument
of A. Consequently, one can see that the phase of the field can take any
value. When the laser is turned on, the field builds up over spontaneously
emitted light that can have any phase, and is further amplified by the phase
preserving stimulated emission. If one switches the laser off and starts the
same experiment again, the laser will reach the same intensity and frequency
but a different phase.
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4.2.3 Laser threshold and phase transition. Spontaneous
symmetry breaking

There is a strong analogy, initially introduced by De Giorgio and Scully*,
between the starting-up of laser oscillation when the unsaturated gain gg is
larger than the threshold gain, and phase transition phenomena. Indeed,
let us consider a ferromagnetic material close to its Curie temperature 7.
Following Weiss law, the magnetization M depends on the temperature T°
according to4:

(T —T)M+gT|M|*M =0, (4.89)

where g and c are positive constants. When T > T., the only possible
solution is M = 0. When T' < T, the material acquires a magnetization M
such that:

2 = e =1 (4.90)

g

The critical temperature T, corresponds to a phase transition characterized
by the emergence of a spatial order for all the microscopic magnetic dipoles.
This order corresponds to a non zero so-called order parameter M (see Figure

41.9).
(a)

(b)
D 0D

Figure 4.9: Spontaneous symmetry breaking in a ferromagnetic material.
(a) Above the Curie temperature, the microscopic magnetic dipoles have
random orientations, leading to a vanishing macroscopic magnetization. (b)
Below the Curie temperature, the microscopic dipole coupling overcomes the
thermal fluctuations, leading to a macroscopic magnetization M. Without
any external magnetic field, there is no preferred orientation for M. When
the system is cooled down below the Curie temperature, it acquires a mag-
netization along a particular orientation.

It is worth noticing that Equation (4.89) determines the amplitude of M
only: it does not impose any orientation for M. However, a given sample al-
ways chooses an orientation for M: this phenomenon is called a spontaneous
symmetry breaking. Such a phenomenon seems to contradict Curie’s princi-
ple, according to which the solutions of a problem have the same symmetries
as the initial data.

* V. De Giorgio and M.O. Scully, Analogy between the Laser threshold Region and a
Second-Order Phase Transition, Physical Review A2, 1170 (1970). See also M. Sargent,
M. O. Scully, W.E. Lamb, Laser Physics, Addison-Wesley (1974)
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It is possible to reconcile the two points of view by considering that
the solution of (4.89) is actually a vectorial random wvariable, which has a
deterministic modulus, given by Equation (4.90), but a random direction
equally distributed along all possible directions. A given sample must then
be considered as a particular realization of a random process. Actually, the
whole statistical ensemble obeys Curie’s law.

These considerations can be readily transposed to the case of the laser,
whose equations are invariant under a transformation A — Ae'?. Thus
the search for steady-state solutions fixes the modulus A of the complex
amplitude A, but not its phase ¢ (see Figure 4.10). However, the classical
picture of a laser above threshold attributes a modulus A and a phase ¢
to the excited mode: the complex amplitude A plays the role of the order
parameter. The existence of a particular phase for a given laser is due to a
spontaneous symmetry breaking, i.e. to a process that violates Curie’s law.

Im A
A

=
D
Y

Figure 4.10: Statistical representation of the complex amplitude A of the
laser field considered as a random variable of fixed modulus and random
phase equally distributed along [0,27]. A particular sample is represented
as a point on the circle.

Like in the case of magnetism, it is possible to reconcile the existence
of a phase with the symmetry of the problem by describing the complex
amplitude of the laser mode as a complex random variable of fixed modulus,
but with a random phase equally distributed along [0, 27| (see Figure 4.10).
A laser in a given operation regime corresponds to a particular sample of a
statistical ensemble.

4.2.4 Laser power around threshold

The laser oscillation starts from spontaneous emission that is emitted in the
laser mode. If we wanted to include the effect of spontaneous emission to our
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description, we must use the tools of quantum optics, which will be discussed
only in PHY562, and proceed to a fully quantum description of the laser.
However, one can introduce spontaneous in a heuristic manner in the present
semi-classical description. Indeed, one important result of the fully quantized
description of atom-light interaction is that the spontaneous emission falling
into the laser mode corresponds to an emission rate which would be the
one of stimulated emission induced by the field of one photon inside the
cavity. More precisely, we will show that, on statistical average, spontaneous
emission can be accounted for in the semi-classical equations of evolution by
adding 1 to NV in the expression of the emission rate. Consequently, in the
case of a laser based on a four-level system, we replace Equation (4.39) by
Ww__N + KANN +1) = ,[ANN 4+ 1) — AN | N . (4.91)

At Tea

In steady-state regime, this leads to:

AN N
= . (4.92)
ANth N + 1
Besides, the saturation of the active medium reads
AN 1
= , 4.93
ANO 1 + N/A/;at ( )
with 1
Noat = — . (4.94)
KT

Defining the excitation ratio as r = ANy/ANy, and combining Equations
(4.92) and (4.93), one obtains:

N r—1 r—1\2 T
(5 (a9
Output power P =100 mW
Wavelength A = 1.06 um
Photon flux Mot = P/(he/X) = 5.3 x 10'® photons/s
Cavity length Leow =04 m
Mirror transmission T = 2%
(no other losses)
Photon lifetime Teav = Leav/cT = 6.7 x 1078 s
Number of photons in the cavity] N' = Teavlphot = 3.5 X 1010

Table 4.2: Characteristics of a typical Nd:YAG laser

The relative weight of the two terms in the square root in Equation
(4.95) determines the evolution of the number of photons in the vicinity of
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the laser threshold. It thus strongly depends on the order of magnitude
of Ngat. To determine this order of magnitude, we take the example of a
Nd:YAG laser whose characteristics are given in Table 4.2. Since one has,
far above threshold, N' = N (r — 1), the order of magnitude of N,y is thus
10'° photons.

N
10.1/8[,/\/'5% = 1010 1010‘

1081 q 8 x 1091 (b)

109 W 108 6 x 1071
104 sat, = 10 Mhreshold 9
04 4 x10°L
102 2 x 1091
0
10 o5 10 15 20" 0 05— T0 15 20"

Figure 4.11: Number of photons N in the cavity versus excitation ratio r for
Nzat = 10'° plotted on (a) a logarithmic scale and (b) a linear scale.

Figure 4.11(a) reproduces, in a semi-log scale, the evolution of the number
of intra-cavity photons versus r for My = 100, plotted using Equation
(4.95). The threshold corresponds to a dramatic increase of N, with a slope
equal to Ngt/2. For comparison, the same quantity is plotted on a linear
scale in Figure 4.11(b), showing no visible difference with Figure 4.5(b).

Comments

(i) The typical number (10'® — 10'?) of photons in the laser mode that we have obtained
explains the remarkable properties of lasers. If one remembers that a “classical” source
such as a thermal source with a maximum emission in the visible has much less than one
photon per mode, it becomes clear that lasers are indeed extraordinary light sources, in
particular as far as spatial and temporal coherence properties are concerned (see Comple-
ments 3C and 5A and the conclusion of Chapter 3).

(ii) If one makes N infinite in equation (4.95), one finds N' = 0 for r < 1, and
N = (r— 1)./\fsat for r > 1: the cross-over around the threshold is replaced by a dis-
continuity of the derivative. Following the analogy with a phase transition, the limit Nt

infinite while keeping r constant can be considered the thermodynamics limit.

4.2.5 Spatial hole burning in a linear cavity

Up to now in this chapter, we have always assumed that the lasing intra-
cavity mode was a traveling plane wave. However, this is possible only in
a ring cavity in which one forces unidirectional oscillation. In a so-called
“linear” cavity such as the one of Figure 4.12, light bounces back and forth

Excerpt from lecture notes of Phy551A, Ecole Polytechnique, 2018



312 CHAPTER 4. LASER IN STEADY-STATE REGIME

and creates a standing wave. Contrary to the case of the traveling wave, the
light energy density is no longer homogeneous along the propagation axis,
leading to a drastic modification of the saturation of the active medium and
of the behaviour of the laser.

T

Mirror Mirror
Active medium

Iout

AVAVAVAVAVAYA
\/\/\/\/\/\/\w .

\ 4

A

Lcav/2

Figure 4.12: Laser based on a linear cavity sustaining standing waves.

a. Standing wave. Saturation

If there were no interferences between the two intra-cavity counter propagat-
ing traveling waves of intensities I, and I_, the total intra-cavity intensity
would be I +1_, which is close to 21 if the losses are small and Iy ~ I_ ~ I.
The laser steady-state regime could then be described by considering that
this total intensity saturates the gain. But the interferences create a spatial
modulation of the intensity Isy(z) along z, and thus the saturation of the
population inversion depends on z (this is the so-called spatial hole burning
effect). Consequently, we can non longer describe the active medium using
the total population inversion AN integrated over the laser mode volume
inside the active medium, but rather the population inversion density An.
The saturation of population inversion must then be treated locally along z,
leading to:

An(z) 1
— , 4.96
Ang 1 B2 e
with
I (2) = 4@ sin® (kz) . (4.97)

b. Output power

The steady-state regime of the laser can be derived by equating the gain and
the losses per unit time. Contrary to the traveling wave lasers considered
above, the intensity of the standing wave laser depends on z. Instead of the
intensity, we thus have to consider the gain and losses of the total electro-
magnetic energy W stored inside the cavity. The time variation, due to the
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gain, of W reads®:

aw
dt

Lo Anolae(2)
= S — " dz. 4.98
gain F0CaL /0 1 + Isw(z)/Isat ‘ ( )

By using Equation (4.97), we obtain, after integration along z:

dw 1
— =eoco,SANglsat Ly | 1 — ———— | . 4.99
0t |gain 0COL 04sat ( ﬁ%_ﬂ/]m) (4.99)

In steady-state regime, this gain must exactly compensate the losses given
by:
dw

o 2e01 Veay
dt B

losses Tcav

, (4.100)
leading to:

I 1
I I — (4.101)
Iy 2 V1 + 4/ usag

This third order polynomial equation can be exactly solved. By keeping only
the physically meaningful solution we get:

Isat 1 T 1
1= ———\/=F+=] . 4.102
2 <T 1~ Va2 " 16) (4.102)
Finally, the laser output intensity is given by
T 1 r 1
Low = EIsat <T - Z - 5 + 1_6> . (4103)

This result must be compared with the expression (4.74) of the laser output
intensity in the absence of spatial hole burning:

T
Iow = Elsat(r - 1) . (4104)

This comparison shows that spatial hole burning does not modify the laser
threshold, but decreases the slope of its output power characteristics. This is
due to the fact that the standing wave does not optimally extract the energy
out of the active medium.

The identity of the laser threshold for traveling and standing waves is
a signature of the fact that the laser threshold depends only on the linear
characteristics of the laser, namely its unsaturated gain and its losses. On
the contrary, when the laser is above threshold, nonlinear saturation plays
a role and the laser poser depends on the nature of the intracavity wave .

5To write Equation (4.98), we have supposed that gain saturation is instantaneous.
This hypothesis is not valid in all kinds of lasers. We will come back to this point in
Section 4.3 and in Chapter 5.
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4.3 Laser dynamic classes. Adiabatic elimination
of the active medium

In Section 4.1, we have established the equations of evolution for the single
frequency laser:

dN N

o = L KANN, (4.105)
dt Teav
d?—tN =T(ANy— AN) -2k ANN . (4.106)

The different notations are defined in Section 4.1.

An important feature of Equations (4.105) and (4.106) is the presence
of the relaxation terms —N /7cay and —'AN which govern the relaxation
of the system towards its steady-state solutions. Depending on the relative
values of the times 7 = 1/T" and 7c,y, two dynamical classes of lasers can be
distinguished:

e Case where 7¢,y > 1/I: class-A laser

Most gas lasers and dye lasers belong to this class. In this case, the relax-
ation time 1/T" of the population inversion is so short that we can consider
that AN always adjusts to the steady-state solution of Equation (4.106),
even if N (slowly) varies. Indeed, let us suppose that A is equal to a con-
stant Ny and that AN takes an initial value ANy at t = 0. Then, using
Equation (4.106), the further evolution of AN(t) is given by:

ANy

AN(#)= ———— (1 —e1t) . 4.107
0 =y 0= (1.107)

This shows that AN reaches its steady-state value on a timescale of the
order of 1/T". From the structure of Equation (4.105), we can see that A/
evolves on a time scale of the order of 7c,y. Since 7eay < 1/T', we can thus
consider that, from the point of view of AN, N is static, and A will reach
its steady-state value at every instant. Consequently, we can adiabatically
eliminate AN, meaning that we suppose that dAN/dt = 0 at all instants in
Equation (4.106), leading to:

AN,

AN(t) = TN

(4.108)

Gain saturation is thus instantaneous compared to the time scale of the
variations of N (¢). Injecting (4.108) into (4.105), we are left with

dN N k ANog N N K ANg N
—_ = — —_— ==+ 4.1
dt Tcav * 1+ 2;HN(t) Tcav * 1 +N/-/\/'sat ’ ( 09)

with Nay = IT'/2*k.
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This equation simply states that the evolution of the number of photons
is due to the losses and the saturated gain. Equation (4.109) could equally
be written for the intensity:

dl 1 Kk ANl
— == T 4.110
dt Tcav 1 + I/Isat ’ ( )
or for the field complex amplitude:
d;él _ A n kAN A
dt 27 2 1+ 2|AP/Lat (4.111)

B A r
 27eay \ 1+ 2|A|2/ It )

where we have used the definition of r given in Equation 4.55.
Using Equation (4.17), (4.18), and (4.54), this equation can be re-written
for the number of photons inside the cavity in the following form:

v N r
At Tea (1 +N/Nsat> ' (12)

By taking dA//dt in this equation, one immediately obtains the steady-state
solutions Nopr and Non (see Equations 4.51 and 4.53) that were derived in
Section 4.2.1.

e Case where Tcay ~ 1/T or 7eay < 1/T': class-B laser

The ruby, Nd:YAG, Er:glass, diode lasers, and some CO, lasers belong
to this class. In this case one cannot perform the adiabatic elimination of
AN. We are thus left with the two Equations (4.105) and (4.106).

The distinction between class-A and class-B lasers does not impact the
steady-state solutions of the laser and their stability that we have studied in
section 4.2. However, as we will see in chapter 5, it plays an important role
on the dynamical behaviour of the laser.

Comments

(1) In the case of the class-B laser with 7cav < 1/I", one could wonder whether it could
not be possible to adiabatically eliminate the variable N by setting % = 0 in Equation
(4.105) and keep only one equation of evolution for AN. However, the absence of a term
equivalent to ’ANy in Equation (4.105) forbids this simplification.

(if) There exists another very rare dynamical class of lasers, the so-called class-C laser,
which corresponds to the case where the atomic dipole cannot be adiabatically eliminated
and the full dynamics of the atomic system must be kept. One then has three differential
equations instead of two, as described in Complement 4A. Such lasers can exhibit sur-

prising dynamical behaviors, such as deterministic chaos.
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4.4 Two-frequency lasers: mode competition

Up to now, we have considered almost exclusively single-frequency lasers.
We have seen in particular in Section 3.3.2 that in the ideal case of a laser
based on a homogeneously broadened active medium and a unidirectional
ring cavity, mode competition leads to single-frequency operation. This is a
marginal situation and we have already mentioned several cases in which this
approximation is not valid. In this section, we will suppose that the laser,
thanks for example to the fact that the active medium exhibits some inho-
mogeneous broadening, can sustain the oscillation of two modes with two
different frequencies. It is beyond the scope of the present chapter to derive
a general theory for mode competition. We will content ourselves by intro-
ducing a simple model for mode competition and analyzing its consequences
on the steady-state behaviour of two-modes lasers.

4.4.1 Self- and cross-saturation terms

In general, the problem of gain saturation in two-mode lasers is very compli-
cated®. Our aim here is to heuristically introduce the minimum of formalism
leading to the correct description of the physical phenomena observed in
actual systems. Let us consider a laser sustaining the oscillation of two
modes labeled 1 and 2. These two modes can be two different longitudinal
modes, two different transverse modes, two counterpropagating modes in a
ring laser, or two different polarization modes. We note N7 and A5 the num-
bers of photons of these two modes, and we suppose that these two modes
take their gains from two independent population inversion reservoirs ANy
and AN,. This would be for example the case of two different longitudi-
nal modes that burn well separated spectral holes in an in homogeneously
broadened medium like in Figure 3.7. Then the rate equations for this laser
read:

dM M

—_— =— AN 4.11

= aNAN (4.113)
%ANl =T(ANo; — ANy) — 2* ki N1ANT (4.114)

AN, N

— =— AN 4.115

dt Tcav2 * KQNQ 2 ( )
%ANQ = F(ANOQ — ANQ) — Q*KQNQANQ s (4116)

where we have supposed that the two modes may have two different photon
lifetimes and exhibit two different laser cross sections and pumping rates.

6See for example M. Sargent, M. O. Scully, W.E. Lamb, Laser Physics, Addison-Wesley
(1974)
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Equations (4.113, 4.114) and (4.115, 4.116) constitute two completely inde-
pendent sets of equations, as if the two modes were actually oscillating in
two different lasers. If we want to take into account the possible competition
of the two modes for gain, we can suppose that each population inversion
AN; with ¢ = 1,2 is subjected not only to self-saturation terms such as
2*k;N;AN; but also to cross-saturation terms Z*Kigijj\/}ANi, leading to:

dN; M

dt_ — _TcaVl + K/INIANI R (4117)
d
EANl =T(ANy; — ANy) — 2°k1 AN (N7 + £12N5) (4.118)
dN N
—_— = AN 4.119
dt Tcav2 * KQNQ 2 ( )
d
&ANQ =T'(ANgy — ANy) — 2" kg ANy (N2 + E21N7) (4.120)

The ratios &2 and £19 of the cross- to self-saturation coeflicients that we
have introduced here can take any positive value”. Let us repeat once more
that this is the simplest way to introduce mode competition and that in real
situations, extra terms must also usually be added to Equations (4.117) and
(4.119). However, the presence of both self- and cross-saturation terms in
these equations makes them even more nonlinear than before and we can
thus expect new phenomena to occur.

4.4.2 Restriction to the case of class-A lasers

If we restrict to a class-A laser, Equations (4.118) and (4.120) can be adia-
batically eliminated, leading to:

A= 1+ WM fggfl\@)/f\/sau ’ (4-121)
ANs= e e R (4.122)
with
Nsat1 = 2*1;1 , (4.123)
Nata = ;—@ : (4.124)

"€12 and €12 cannot be negative because that would mean that saturation by one mode
increases the gain of the other mode.
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The laser behaviour is then governed by the two remaining equations:

dM M [ 1 }

— = -1 4.125
dt Teavl + 1+ (M + &aN2) /Naaer | ( )
ANy N, [ T2 }

i -1 4.126
dt  Teav2 1 + My + €M) /Naaz | ( )

where we have introduced the relative excitation ratios r; = TeavikiANg; for
the two modes i = 1, 2.

The physical meaning of these two equations is clear: the evolution of
the number of photons in each mode contains two terms, corresponding to
losses and gain, respectively. The gain of each mode is saturated by its own
number of photons (self-saturation N;/Ngati) and by the number of photons
in the other mode (cross-saturation &;;Nj/Nsati)-

4.4.3 Steady-state solution

We suppose in the following that the two modes are above threshold, meaning
that 1 > 1 and 7o > 1. This makes the steady-state solution N7 = Ny =0
unstable, and we will no longer consider it in the following. The other steady-

state solutions are obtained by taking % = % = 0 in Equations (4.125)
and (4.126), leading to:
() NMi=0 or (8) M +&aNo=Nga1(r1 —1), (4.127)
() Na=0 or (0) Mo+ &Ny =Nagpa(ra —1). (4.128)

The four equations labelled (v, 3,7,0d) correspond to four straight lines in
the (N1, N3) plane, like for example in Figures 4.13, 4.14, and 4.15 that
will be discussed below. The steady-state solutions thus correspond to the
intersection points between either (a)) or (f) on the one hand and either
(7) or (§) on the other hand. If we eliminate the intersection between («)
and (), which is the trivial solution N7 = Ny = 0, we see that we are left
with three possible solutions: i) only mode 1 oscillates (intersection of ()
and (vy)); ii) only mode 2 oscillates (intersection of («) and (9)); iii) the two
modes oscillate simultaneously (intersection of (3) and (9)). In the following,
we discuss the stability of these solutions.

a. The stronger mode takes all

Let us look for the stability domain of the situation for which only one
steady-state solution is stable, the one for which only mode 1 oscillates:

N = Naaa (11 = 1), (4.129)
N =0. (4.130)

Excerpt from lecture notes of Phy551A, Ecole Polytechnique, 2018



4.4. TWO-FREQUENCY LASERS: MODE COMPETITION 319

To evaluate the stability of this solution in a way analogous to Section 4.2b,
we rewrite N7 (t) and Na(t) according to:

Ni(t) = ND + 0N () (4.131)
No(t) = NL(t) . (4.132)
By injecting Equations (4.131) and (4.132) into Equations (4.125) and (4.126)

with the help of Equations (4.129) and (4.130) and keeping only first-order
terms in 0NV; and dN5, one obtains:

d NP 0N + E126N;

—ON; = - , 4.133
dt ! Tcavl 1 j\/satl ( )
d N> r9 >

— 0Ny = —= [ -1+ . 4.134
dt 2 Tcav2 ( 1+ ngNl(]/-A/-satZ ( )

The eigenvalues of the matrix corresponding to Equations (4.133) and (4.134)
are both negative when

72

1+ &1 N? /Naat2 <

1. (4.135)

This condition means that the gain of mode 2 saturated by the presence of
mode 1 is smaller than the losses, preventing mode 2 from reaching threshold.
Using Equation (4.129), Equation (4.135) can be re-written in the fol-
lowing form:
Naata(r2 — 1)
133

Similarly, if we want the solution (4.129-4.130) to be the only stable one, we
need the solution in which only mode 2 oscillates to be unstable, leading, in
analogy with (4.136) to:

< Naat1(r1 — 1) . (4.136)

Naat1(r1 — 1)

> Naatz(r2 — 1) . (4.137)
§12

To illustrate this situation, we consider the four lines corresponding to
(v, B,7,0) in Equations (4.127-4.128). These lines are plotted in Figure
4.13, and steady-state solutions must be intersections of one full line with
one dotted line. This figure shows that the inequalities (4.136) and (4.137)
lead to the fact that the two lines (3) and (§) do not cross in the N7, Ny > 0
quadrant. The only stable solution is the one corresponding to a circle in
Figure 4.13. This situation, which is reminiscent of the discussion of Figure
3.9, corresponds to the case where the stronger mode takes all the gain and
“stifles” the weaker mode.
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NA

Naat1(r1 — 1)
12

Naat2(r2 — 1) &

(@)~

M
/\/'satl(rl - 1)

0
Nata(r2 — 1) j

§o1

Figure 4.13: Situation where only mode 1 can oscillate. The circle corre-
sponds to the stable steady-state solution and the stars to the unstable ones.
The full lines correspond to («) and (3) in Equation (4.127) while the dashed
lines correspond to () and (J) in Equation (4.128).

b. Simultaneous oscillation of the two modes

Let us now consider the steady-state solution of Equations (4.125) and
(4.126) for which A7 # 0 and ANy # 0, i.e. the intersection point of the
lines defined by Equations (5) and () in (4.127) and (4.128):

Naat1 (11 — 1) — &12Ngag2(r2 — 1)

0 _ 4.138
M 1—¢&12é1 ’ ( )
o Naatz2(ra — 1) — &1 Naar1 (11 — 1) 11

= .139
Mo 1—¢&12é1 ( )

In the absence of mode competition (£12 = &21 = 0), one recovers for each
mode the usual solution of a single-frequency laser above threshold (see Equa-
tion 4.53), just like in Figure 4.6.
To study the stability of the solution (4.138, 4.139), we perform a linear
stability analysis by writing:
Ni(t) = N? + N1 (t) (4.140)
Na(t) = N3 + 0N, (t) (4.141)

with [6NV7(t)] < NP and [0N2(t)| < NY. By injecting Equations (4.140) and
(4.141) into (4.125) and (4.126) and keeping only first-order terms in dN;
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and 0Ns, one obtains:
ON, N

- M
ONo ON,

d

— 4.142
dt , (4142)

with

Nlo/Tcavl rl-A/-satl 512N1(]/Tcavl7nl~/\/sat1
M= . (4.143)
521-/\/’10/7—cav2712-/\/’sat2 NQO/Tcav2T2A/;at2

The eigenvalues of —M are given by the characteristic equation:

(R PR B S 50—
1 Tcale/;atl T2 Tcav2-/\/'sat2 T172Tcavl Tcav2-/\/’sat1-/\/’sat2 ’
(4.144)
leading to
NY ND NOND
PRmDY < 1 + 2 >+ L2 (1-&12621) = 0.
Tchavl-/\/'satl 7“27—cav2-/\/'sat2 T1T2Tcav17cav2A/;at1A/;at2

(4.145)
The solution given by Equations (4.138) and (4.139) is stable provided the
two solutions A\ and A\_ of Equation (4.145) have positive real parts. Let
us rewrite Equation (4.145) in the following form:

M- ANa+pB)+aB(1-0)=0, (4.146)

where we have defined

NY
0= 4.147
71 Teav1 Nsat1 ( )

N3
- 4.148
& 9 TeavaNsat2 ( )
C =&12691 . (4.149)

The discriminant of Equation (4.146) is

A=(a+B)?—4aB(1—C) = (a—pB)%+4a8C . (4.150)

The sum and products of the two solutions are given by Ay + A_ = a+
and Ay A_ = af(1 — C), respectively. In the case where o > 0 and 8 > 0,
A+ and A_ can be both positive only if C' < 1. Besides, in the case where
a+ B > 0 but one of the numbers « or 3 is negative (for example o > 0 and
—a < < 0), Equation (4.150) reads

A =a?+ B2+ 2|af| — 4C|aB| > o + 52 + 2laf| — 4laf| > 0. (4.151)
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Then A4 and A_ are both real. The stability depends on the sign of

1

A= 5{(&—{—5)—\/(a+ﬁ)2—4a6(1—0)} (4.152)

which is clearly negative. The simultaneous oscillation of the two modes is
then unstable.

NA

Naag1(r1 — 1)
§12

Naata(r2 — 1) &

(@)~

§21

Figure 4.14: Situation where both modes oscillate simultaneously (weak cou-
pling case, C' < 1). The circle corresponds to the stable steady-state solution
and the stars to the unstable ones. The full lines correspond to («) and (/)
in Equation (4.127) while the dashed lines correspond to () and (d) in
Equation (4.128).

SO R
M
-/\/'sa -1
Nty = 1) j \ to(ra — 1)

In conclusion, the solution given by Equations (4.138) and (4.139), which
corresponds to the simultaneous oscillation of the two modes, is stable only
when the three following conditions are satisfied:

N >0, (4.153)
N >0, (4.154)
C=¢pby <1. (4.155)

Using Equations (4.138) and (4.139), this situation can be represented in the
(N1,N3) plane (see Figure 4.14). The intersection of the two lines (3) and
(6) is the only stable solution, thanks to the fact that the coupling constant
C is smaller than 1. This situation, where cross-saturation is smaller than
self-saturation in Equations (4.125) and (4.126), is called the weak coupling
case.
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The preceding discussion focuses on the intensities of the two modes and
does not give any prediction about the relative phase of the two modes when
they oscillate simultaneously inside the same laser. When the frequencies of
these two modes are well separated, no relative phase locking can occur and
the phases are uncorrelated, contrary to what can happen when there are
at least three oscillating modes and so-called mode locking is possible (see
Section 5.3). On the contrary, when the frequency difference between the two
modes is small, the two frequencies can lock to each other if a small fraction
of the field of one of the modes is injected into the other one. This injection
locking phenomenon, which is quite similar to the phase locking of coupled
mechanical oscillators (Huyghens pendulums) or electronic oscillators, is the
subject of Complement 4B.

c. Bistability
NA
Niatz(r2 — 1)

Neat1(r1 — 1)
§12 q

™ (7)
. N

Naato(ra — 1) _/ A\/\/satl(rl -1
21

Figure 4.15: Situation where the two-mode laser exhibits bistability (strong
coupling case C' > 1). The circles correspond to the stable steady-state
solutions and the stars to the unstable ones. The full lines correspond to («)
and () in Equation (4.127) while the dashed lines correspond to () and (0)
in Equation (4.128).

\J

As we have seen in paragraph 4.4.3a above, the condition for stable os-
cillation of mode 1 alone is given by Equation (4.135). Let us imagine a
situation in which this solution is stable and the symmetric solution where
only mode 2 oscillates is also stable. Then the two following conditions must
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be simultaneously fulfilled:

" <1
14 &1oNaata(ra — 1) /Naar —

T2
<1. 4.157
14 &1 MNsar1 (11 — 1) /Naatz — ( )

(4.156)

These conditions mean that the gain of mode 1 (resp. mode 2) saturated
by mode 2 (resp. mode 1) only is lower than the losses, preventing it from
oscillating. These equations can be re-written in the following form:

Naat1(r1 — 1)

Naatz(ra — 1) > (4.158)
12

Nsat1(r1 — 1) > Neaez(rz — 1) , (4.159)
21

showing that the lines () and () given by Equations (4.127) and (4.128)
look like in Figure 4.15. It is easy to show that Equations (4.158) and (4.159)
lead to the following condition on the coupling constant:

C=¢oby > 1. (4.160)

This condition also shows that, according to the discussion of paragraph
4.4.3b, the solution corresponding to simultaneous oscillation of the two
modes becomes unstable, as evidenced by the star at the intersection of
lines (f) and (9) in Figure 4.15.

The consequences of this situation are better described in Figure 4.16.
This figure is a cartoon of what happens when one slowly scans the fre-
quencies of the two modes labeled 1 and 2, which are supposed to have the
same losses, across the gain profile. From (a) to (e), the two frequencies are
increased, for example by decreasing the cavity length. This can be done
by mounting one of the cavity mirrors on a piezoelectric transducer and ap-
plying a voltage ramp on this actuator. In (a), only mode 2 is oscillating
because mode 1 is below threshold. Then, by increasing the two frequencies,
we arrive in (b), where mode 1 is above threshold, but its unsaturated gain
is much lower than the one of mode 2, leading to the fact that we are in the
situation of Section 4.4.2a: mode 2 takes all the gain and oscillates alone.
We then further increase the two frequencies to reach the situation described
in (c): now the two modes have the same gain and same losses. It is only
the fact that mode 2 was oscillating alone before this point was reached that
ensure that it is still oscillating at this point. If one further increases the two
frequencies, mode 2 goes on oscillating alone till we reach Figure (d). After
this, the bistable solution becomes unstable and the only stable solution cor-
responds ton the oscillation of mode 1 only: the laser flips from mode 2 to
mode 1. It is worth noticing that between points (c) and (d), the mode that
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Figure 4.16: (a,b) Evolution of the frequencies of the two modes across the
gain profile when the cavity length is scanned in the two opposite directions.
(c) Resulting evolution of the number of photons in mode 1 as a function of
the cavity length. Mode 2 exhibits the complementary evolution.

oscillates, namely mode 2, is not the mode that has the larger gain. In this
domain, the stable solutions correspond to bistability, and the laser follows
the same solution (only mode 2 oscillates) by continuity. From (d), if we
further decrease the cavity length, mode 2 ends up being below threshold as
shown in (e) and mode 1 alone goes on oscillating.
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At this point (e), we reverse the direction of the frequency scan, by
increasing the cavity length. Further evolution of the laser is cartooned in
Figures 4.16(f-j). From (f) to (g), only mode 2 oscillates because it is the
only stable solution. From (g) to (i), we are in the bistability domain, where
the two modes could oscillate, an only continuity allows us to predict that
mode 1 oscillates. In particular, if we compare Figures (c¢) and (h), we see
that the laser parameters are the same in both figures: the two modes are
symmetric with respect to the gain medium and thus have exactly the same
gain and losses. But the oscillating mode depends on the direction of the
frequency scan: mode 2 when the frequencies are increased and mode 1 when
they are decreased. Figure (i) corresponds to the point where the gain of
mode 1 becomes so weak that the bistable solution becomes unstable, and
mode 2 alone becomes stable, till we reach Figure 4.16(j).

Nk (h)

- >
<

(a.j)
(d) (b) Leay
Figure 4.17: Evolution of the number of photons in mode 1 as a function of

the cavity length, exhibiting a hysteresis cycle. Mode 2 exhibits the comple-
mentary evolution. The labels correspond to the subfigures of Figure 4.16.

The resulting evolution of the power of mode 1 as a function of the cavity
length is thus summarized in Figure 4.17: depending on the direction in
which the cavity length is scanned, N7 exhibits a different evolution, leading
to the appearance of a hysteresis cycle. N5 exhibits the complementary
evolution.

Figures 4.16 and 4.17 raise an interesting question. What happens if we
start from the situation of Figures 4.16(c) and 4.16(h), where the two modes
have the same gain and losses, and switch off the laser before switching it
on again. When we switch on the laser, both modes have equal probability
to end up oscillating in steady-state regime, but cannot oscillate simultane-
ously. And since the laser oscillation starts from nothing, there is no memory
to “tell” the laser which mode it should choose. The answer to this question
is that the laser actually does not start from nothing. It starts from spon-
taneous emission, which is intrinsically random. This means that the mode
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that eventually wins is the one that first receives a spontaneously emitted
photon. Switching on this laser is just like throwing a coin. This is an-
other example of spontaneous symmetry breaking. But, contrary to Section
4.2.2b, the symmetry breaking occurs this time for a discrete variable that
can take only two values (mode 1 or 2), and not for a continuous variable
(the single-mode phase).

d. Role of the coupling constant on the laser behaviour

Beyond the case already mentioned above of an active medium exhibiting
some inhomogeneous broadening, there are many situations in which two
modes can oscillate, and where the mode competition that we have just
discussed governs the behaviour of the laser:

e In the case of a bidirectional ring cavity, the two counter propagating
modes compete for the gain. Depending on the spectroscopic details
of the active medium, these two modes can oscillate simultaneously or
exhibit bistabillity.

e In the case of a linear cavity, the laser modes are no longer traveling
waves, but become standing waves, as shown in Figure 3.11. The
presence of the spatial holes burnt by these standing waves in the
population inversion leads to a decrease of the competition between
the modes (see Figure 3.12).

e In the case of an inhomogeneously broadened active medium, depend-
ing on their frequency difference, two modes interact more or less with
the same atoms. The strength of their competition will thus depend
on their frequency difference (see Figure 3.7).

e Let us imagine a laser cavity that can sustain the oscillation of two
orthogonally polarized modes, for example two orthogonal linear po-
larizations. Then, depending on the spectroscopic details of the active
atoms or ions, the two modes may share the same amplifying atoms
or not. Then the competition between the two modes can be more or
less severe.

It is beyond the scope of the present chapter to address all these different
situations. However, all these situations are governed by equations relatively
close to the ones we have used in the present section. And, in all these
cases, the key parameter is the coupling constant C. Indeed, the comparison
between the situations of Figures 4.14 and 4.15 shows that the stability of
the bistability solution and the simultaneity solution is governed by the order
in which lines (5) and () cross. We have seen in the preceding paragraphs
that this depends on the value of the coupling constant C: when C <1 the
two modes may oscillate simultaneously, while when C' > 1 only bistable
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operation is possible. This constant C, which gives the ratio of cross- to self-
saturation terms, consequently plays a central role in the dual-mode laser
physics. And an important field of laser physics consists in adjusting the
value of C to achieve the desired behavior for the laser.

This discussion can be generalized to a larger number of modes, but at
the expense of a much more complicated formalism. For example, in the case
of three modes, Figures 4.13, 4.14, and 4.15 must be replaces by 3D plots
where on studies the intersection of planes.

Comment

The preceding discussion of the stability of solutions has been performed in the case of a
class-A laser, allowing us to adiabatically eliminate the populations. One can show that
the same conclusions, concerning the stability of the steady-state solutions, hold when one
considers the full set of Equations (4.113-4.116). However, the transient behaviour of the

laser depends on its dynamical class, as will be shown in Chapter 5.

4.5 Conclusion

This chapter has allowed us to derive the single-mode laser equations of
evolution from the rate equation model that we developed in Chapter 2. We
end up with two coupled nonlinear differential equations that describe the
evolution of the two energy reservoirs that constitute a laser: the intracavity
electromagnetic energy and the energy stored in the active medium in the
form of atomic population inversion. The study of the steady-state solutions
of these two equations have shown that the laser is a good illustration of some
interesting features of nonlinear dynamical systems. Indeed, the steady-
state laser has in general two steady-state solutions, the stability of which
determines which one will be experimentally observed. By tuning a control
parameter, such as the pumping rate, one can observe bifurcations, where
one solution becomes unstable while the unstable one becomes stable. In the
case of two modes, this physics becomes richer, since we now have several
types of steady-state solutions, in which only one mode or two modes can
oscillate. Furthermore, the competition between the two modes for the gain
determines whether simultaneous oscillation is possible or not. In particular,
in the case of strong competition, we have seen that the laser can exhibit
bistability: an intriguing situation where two stable solutions exist, and the
laser “chooses” between these two solutions based on its preceding history.
All these remarkable features are associated with the nonlinearity of the
laser equations, due to the fact that the gain is a nonlinear function of the
laser intensity, because of saturation. Thanks to this nonlinearity, the laser
is close to many dynamical systems, such as for example the predator-prey
situations governed by Volterra equations. In the following chapter, we will
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see that similarly to these systems, the nonlinearity of the laser has even
more interesting consequences when one studies its transient and dynamical
behaviours and its fluctuations.
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